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Abstract

This paper presents an analytical investigation of the design method and modeling of an
air-bearing system for ball-joint-like actuators. It addresses the method of regulating the three-
d.o.f. translations of the rotor introduced by the air-bearing system, thereby improving the
dynamic performance of the orientation motion manipulation. The kinematics, which relates
the rotor displacement and the air gaps that are essential for design optimization, dynamic
simulation and motion control, are derived in closed-form. With a detailed modeling of the
pressure—flow relationship as a function of the rotor position, the forces and dynamics of the
system are formulated, and design methods for regulating the rotor displacement have been
explored analytically. Simulation results suggest that the fluid forces could be generated to
passively stabilize the otherwise open-loop, unstable, electromagnetic system. It is expected
that this research will be a basis for designing and evaluating an improved VR spherical motor
with enhanced torque capability by eliminating mechanical friction.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many applications in industry require the use of fluid bearings to overcome
friction, to provide more precise location and alignment of components, and to enable
smooth movement of large components from one point to another point. In other
applications, precise alignment of parts is critical to the quality and specifications of
the product. As advances in technology continue to demand more accurate and
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precise devices, there are opportunities to utilize the uniquely attractive features of
air-bearing systems to meet these challenges.

Three basic techniques are used in non-contact bearing designs. They are fluid
bearings, magnetic levitation, and the Meissner effect. A comparison of the attributes
of these levitation techniques is provided in Table 1 [1]. A non-contact air bearing is
considered here, since it has the potential to enhance the motor’s performance for
more advanced applications, it has a cooling effect on interacting components and it
does not interfere with the actuator electromagnetic system. In fluid bearings, a film
of fluid is forced between interacting surfaces to separate them. An external pump
usually generates the pressure. Depending on the source of pressurization, fluid
bearings are categorized into hydrodynamic and hydrostatic bearings. Hydro-
dynamic bearings are self-acting since the pressure separating the surfaces is a
consequence of high-frequency, relative oscillatory movement of the surfaces. This
technique is commonly used in miniaturized, low load support applications, for
example bearings for hard-disk drives [2]. In hydrostatic fluid bearings, external
fluids, typically liquid oils, are supplied to maintain a high-pressurized fluid film
between surfaces. The equivalent of hydrostatic and hydrodynamic bearings when
air is the fluid medium are aerostatic and aerodynamic bearings, respectively. The
primary difference is that air is compressible while liquids are generally considered
incompressible.

Many authors have studied the dynamic behavior of fluid films in fluid-bearing
systems [1,3]. Bearings based on viscous oil form the thrust of successes in heavy
machinery design, where the oil films are used as friction-reducing, parts-separating
lubricants especially in journal and ball bearings. Among the works in this area is the
squeeze film technique motivated by the rapid advancement of micro-devices.
Fearing et al. [4] studied miniaturized systems with small dimensions and narrow
gaps associated with microstructures based on aerodynamic squeeze film technique
and showed that the degree of pressurization is proportional to the frequency and
amplitude of the externally applied oscillation. The researchers also extended the

Table 1

Comparison of levitation techniques
Attributes Fluid bearing Magnetic Meissner

Gas 0il bearing effect

Simplicity Fair Fair Good -
Cleanliness Good Poor Good Good
Material availability Good Good Fair Poor
Cost Average Average High High
Load bearing Poor Good - -
Wear resistance Good Fair Good Good
Reliability - Fair Fair -
Operating temperature Low High Low Sub-zero
Heat dissipation High Fair low -
Standard parts available? Poor Good Fair -

Machining accuracy High High - -
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works of others by using capacitive measurements to study the stability of squeeze
film bearings; they concluded that air spring force is proportional to the inverse fifth
power of the plate separation while the damping force is proportional to the cube of
the float height. Pina da Silva and his co-workers [5,6] presented a finite element
method used for improving squeeze film analysis. Crank and Nicolson [7] had earlier
contributed a method to vary design parameters in squeeze film bearings resulting in
the effects of bearing parameters on the system performance being studied for im-
provements through optimization. Blech [8] developed and solved the linearized
model for compressible gas lubrications while Sherman [9] extended the work to
non-linear models. These works have contributed to sub-millimeter robotic systems
like micro-robots.

Recently, Zorge [10] presented a method for measurement of miniature hemi-
spherical air-bearing parameters such as load capacity, stiffness, etc., using electrical
gap capacitance. The research showed that this method is inexpensive, has high
measuring resolution and accuracy, and is able to capture dynamic behavior. The
disadvantage of this method is that calibration is required for each bearing shape. In
addition, the material of the bearing must not be metal, which is not always the
practical case. On aerostatics, many researchers [11-13] have investigated bearing
designs and characteristics. Ono [14] proposed an air bearing with multiple source
feeds or narrow grooves to fight pneumatic instability; this design attained a measure
of success. Other authors [12,15,16] have contributed to improving stability of fixed
orifice or inherent restrictor bearings. Because self-excited vibrations may occur in
frequently used fixed-orifice, aerostatic bearings, simultaneous improvements in the
dynamic stiffness and stability were difficult to obtain. Sato et al. [17] examined
theoretically and experimentally the dynamic characteristics with an actively con-
trolled restrictor. Their results showed improvements in dynamic stiffness and sta-
bility. Though the experiment had some success, practical applications were not
thought to be feasible. A drawback of aerostatic bearings is that relatively large areas
are required to achieve high load-bearing capacity.

Other researchers have worked on controls techniques for bearing devices.
Hammer et al. [18] designed a novel three-degrees of freedom (d.o.f.) fine positioner
(FP), which provided high performance, precision and speed (12g’s acceleration, 0.2
um resolution) for robotic application. Control issues, aimed at achieving stable
response, good disturbance rejection and closed-loop control, were discussed. In-
terests in developing integrated motor-bearing system have motivated a number of
researchers [19-21] to develop control methods for magnetic bearing systems to
compensate rotor misalignment. These works, however, have concentrated on single
axis bearing devices.

In this paper, we explore the use of a non-contact, spherical air-bearing system for
multi-d.o.f. spherical actuators developed by Lee and his co-workers [22-24], which
operates on the principles of variable reluctance (VR). The motor combines the roll,
pitch and yaw motion in one joint making it attractive for many applications. Be-
sides the capability of three-d.o.f. motions in one joint, the motor has a large range
of motion, isotropic properties and no singularities within the workspace. These
flexible design features make the VR spherical motor suitable for a wide range of
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applications such as water-jet cutting, laser cutting, painting, welding, material
handling, coordinate measurement etc., where smooth uniform manipulation of the
end-effector is required. Over the years, research has been directed toward the op-
timization of the motor torque. Recent efforts to reduce the discrepancies between
the actual and predicted torque outputs have suggested that friction, accountable by
the transfer bearings of the motor, is significant. While the ““reaction-free”” magnetic
levitation control strategy proposed by Zhou and Lee [25] has the effect of relaxing
frictional forces, the trade-off is the need for sophisticated feedback control design
due to the inherent instability of the electromagnetic system. As advances in tech-
nology continue to demand more accurate and high precision spherical devices, we
explore the use of thin-film air bearings along with the unique attractive features of
the VR spherical motor to meet these challenges. Specifically, we discuss a practical
means to effectively overcome static and dynamic friction in spherical actuators,
aimed at improving the output torque and broadening the tasks they can undertake.
We explore air bearings over fluid bearings, magnetic levitation, and the Meissner
effect because air bearings are clean, have a cooling effect on interacting components
and do not interfere with the actuator electromagnetic system.

The rest of this paper is organized as follows: Section 2 discusses the bearing
design configuration for a ball-joint-like spherical device. This is followed by the
characterization of airflow through the bearing in Section 3, which generates the
forces on the rotor. Then, the system dynamics are presented in Section 4, followed
by design methodology and simulations in Section 5. Finally, our conclusions are
presented.

2. Bearing for ball-joint-like devices

Consider an arbitrary displacement of the two spherical surfaces as shown in Fig.
1, where r, is the rotor displacement with respect to the center of the stator.
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Fig. 1. Conceptual schematics illustrating spherical bearing.
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In Fig. 1, the reference frame XYZ is defined at the center of the stator, O, with
the Z-axis pointing toward the opening on the stator, and xyz is fixed at the center of
the rotor, (¥, with its z-axis along the rotor output shaft. At equilibrium, the co-
ordinate frames XYZ and xyz have a common origin at their centers. Thus, any
position on the rotor can be expressed with respect to the XYZ coordinate system
using a 4 x 4 homogeneous transformation matrix, [7]:

[Pl = [T1[PL,,. (1)

where [Py, and [P] _ are the position of a point on the rotor measured with respect
to XYZ and xyz, respectively.

2.1. Bearing configurations

The design concept uses pressurized air to regulate the rotor such that the rotor
displacement 7, is null regardless of any “disturbances” caused by the electromag-
netic actuation or an external force. Multiple independent spherical bearings are
strategically designed to support the rotor. In general, the larger the number of
bearings, the larger the load the system is capable of supporting. The challenge,
however, is to design a compact yet efficient air-bearing system to fit into the limited
surface area of the rotor. In addition, the bearings should be designed so that they do
not interfere with the electromagnetic poles of the spherical motor, which are located
following the pattern of a regular polyhedron.

An attractive design forces pressurized air passes through the center of the stator
poles on which the coils are wound, enabling the units to serve as bearings. The
advantages of joint magnetic-pole/bearing units are twofold: (1) The air jet will
provide a cooling effect to the coil windings. (2) It will optimize the stator surface by
maximizing the size of a bearing, thereby enhancing load-bearing capacity. In the
following discussion, we shall consider the case where six or more bearing points are
evenly spaced on the spherical bearing such that bearing forces can always be
grouped in pairs. As illustrated in Fig. 1, the pair of bearing forces F; and F; exert
equal but opposite forces through the center of the stator.

2.2. Forward kinematics

The gap between the stator and rotor along a pair of forces, 1?1 and Ijj can be
determined with the aid of Fig. 2. The net force, Fj; = F; + F}, can be described by

F; = Fyey, (2)
where F; and e;; are the magnitude and the unit vector (known) of the resultant

force. As shown graphically in Fig. 2(b), the minimum air gap between _the rotor and
the stator is in the direction of r,. Thus, the included angle between Fj; and r, is
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Fig. 2. Schematics for gap determination. (a) Rotor displacement. (b) Bearing force line of action.

R Fy- 1o
é)j,' = (:0571 (e,‘j . ero) = C0571 (17;—7')7 (3)

ii¥o
where 7, is the magnitude and e, is the unit vector of ro. For a given rotor dis-
placement, the air gaps, 4;, and 4; are given by Eqgs. (4a) and (4b):

hi =1, — {m+ro cos Oﬁ} (4a)

and
hj—rs—{ r?—rgsinzeﬁ—rocosgj,}, (4b)
where r; and r; are the radii of the stator and rotor at the interface, respectively.

2.3. Inverse kinematics

Since direct sensing of the rotor displacement 7, is difficult, the inverse kinematics
provide a practical means of computing the rotor position from the air gap mea-
surements. With three independent pairs of gap measurements, the three orthogonal
components of the rotor displacement can be determined as follows.

Subtracting Eq. (4a) from Eq. (4b), we have

-~ hi—h
roCOSjS:r0~eij: 12 . (Sa)
Two other similar equations can be obtained from two other pairs of air gaps.
o hiy— hi_
To® €j-1i-1 = %7 (5b)
-~ - hjp1 — hivy

To €jpliyl = T (5¢)
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Egs. (5a)—(5¢) can be written in matrix form:
Iy 1 hj—l — hi_y
|:ej—1,i—1 €ji €Lt | [TV T3 h; — h; ) (6)
7y hj+1 = hij1,
where r,, r, and r, are the components of ro in the direction of X, Y and Z, re-
spectively.

3. Air-bearing force model

Fig. 3 shows a schematic of a simple, pocketed, orifice-compensated bearing. Air
enters from a pressure source, passes through an orifice of diameter d,, then expands
isentropically into the pocket of diameter R, and recess d,, and finally exhausts to the
atmosphere through the annulus, which consists of two parallel surfaces of spacing /.

3.1. Flow characteristics

The following assumptions are made in deriving the dynamic model: (1) The
pressure in the pocket is uniform; (2) The air is isothermal; (3) Changes in air density
are attributed mainly to variations in pressure, and the ideal gas law, p = pRT, where
p, R and T are the pressure, gas constant and temperature of the air, respectively, is
assumed to hold throughout. Thus, the force acting on the rotor is given by inte-
grating the pressure over the bearing surface as follows:

Ry Ry
sznl/o pprdr+/R prdr], (7)

p

where p, and p are the pressures in the pocket and the annulus, respectively. The
mass m contained in the bearing is a function of the rotor displacement along
the direction of the actuating force as well as the air density and the state of the air.

Bearing R |,
e
i o P> uz) >
Y/ W W/ A/ AN /4
' Rotor

Fig. 3. Orifice compensated air bearing.
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The time rate of change of the air mass is the difference between the inflow and the
outflow, or
dm
" =GR — qo, 8
dt qr 9o ( )

where m is the mass of the air contained between the bearing surfaces; and ¢g and ¢,
are the mass flow rate through the orifice restriction and the exhaust, respectively.
The mass m is given by

Rp Ry
m=2n l/ (dp + h)prdr+ / hprdr]
0 R

P

or
Pr 2n (R
m:ﬁnRP(dp—i_h)—’_ﬁ/RP hprdr (9)

Since the gap in the annulus is very small and the pressure variation in the z-
direction is negligible, the flow between the surfaces is laminar. Thus, the flow—
pressure relationship through the annulus, which is essentially laminar flow between
two parallel surfaces, can be shown to be

12ug,RT . (R
h3 r

or we can express the flow rate as a function of pressure and the air gap as follows:

2 2\
g0 = (b, —p)m . (10)
12uRT In(Ry/R,)

The flow through an orifice has been modeled by several authors [9,26]. A particular
form, known as Fliegner’s approximation, has been chosen for this analysis due to its
convenience for analytical and computational purposes.

1/2

B nd> y 2\ @HD/G=D) s
o ()i () )]

3.2. Energy conversion

The effect of the air gap on the rotor dynamics can be examined using the prin-
ciple of energy conservation:

Fo(t) - o(t) = Ey. (12)

where E is the rate of the net fluid energy that is converted into mechanical energy;
and F, and v are the corresponding converted mechanical force and velocity vectors,
respectively. For multiple pairs of air bearings, the net fluid power is given by
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n

. d /1
Er = Z |:psiq11i — Pai9oi — a (5@]%,—)} , (13)

i=1

where the air capacitance is defined as C; = dm;/dp,;; and n is the number of air-
bearing units.
Using Eq. (8), Eq. (13) can be rewritten as

n

: 1, .
E=)" l:(psi = Ppi)4Ri + (Ppi — Pai)qoi — Epﬁ,-Ci} : (14)

i=1

The mechanical power can be written as
- .,
Fo(t) - 0(t) =Y Fuki, (15)
k=1

where X; (i = 1,2,3) are the linear velocity components of the rotor or

dE; = (Fy - v)dt = Fodx + Fyydy + Foodz. (16)

Noting that the elements, dx, dy and dz, are independent of each other, the gradi-
ent of the total energy of the system gives the forces along the tangent lines; we
have

Fy = VE;, (17)

where

0 \— 0 \—= 0 \—
V= <&>E * (&)“ <&)E

is the gradient of the system’s energy along the stator fixed coordinate axes.

In Eq. (14), the first and second terms account for fluid frictional dissipation in the
orifice and in the annulus, respectively. The third term accounts for the fluid energy
stored within the air gap, which depends on the volume change (capacitor) and the
pressure in the air gap. To serve as an efficient air-bearing, the third term must
dominate; otherwise the fluid energy will be dissipated as frictional heat. If the fluid
frictional dissipation in the orifice and in the annulus are negligible; the system
approaches the case of ideal energy transformation or

— 1 n
Fojdens = VEr = —5 > pLVC (18)
i=1

For a small air gap, the pressure in the annulus could be reasonably approximated
by a linear relationship:
r—Ry
Ry—R,"

PEpy— (Pp—Pa) (19)



184 K.-M. Lee et al. | Mechatronics 13 (2003) 175-194
Substituting p from Eq. (19) into Eq. (9), we have
[hippdeq + dppanlza + hipa(nR% — Aeq)]

o 20
" RT ’ (20)
where
T
Aeq = TCqu = § (Ri =+ RbRp + Ré)

Using the definition of the air capacitance and Eq. (20), the following approximation
can be derived:

[hiAeq + danfJ

Lo LT TR 21

RT (21)

P & — 25§72 g (22)
b,ideal =— ORT Pp,- i

i=1

As shown in Egs. (18) and (25), the air-bearing force is a quadratic function in py;. In
addition, the force increases as the air gap (or the capacitance) decreases, which
tends to stabilize about a steady-state operating point.

3.3. Perturbation model

In general, frictional dissipation cannot be neglected and the flow—pressure rela-
tionships, given by Egs. (10) and (11), are highly non-linear. For the study of the
dynamics due to a small deviation of the rotor displacement as shown in Fig. 2, we
derive a perturbation model about an equilibrium operating condition (where the
rotor is concentric with the stator).

Using the linear approximation of pressure along the annulus, the total force
acting on the rotor is obtained by integrating the pressure over the bearing surfaces.

~ Ro ~ Ro _ .\ "—R,
f =2n / (ppi _ppj)rdr _/ (.ppi _ppj)R rdr ) (23)
0 Ry b p

—R

where the first integrand is at the pocket and the second is from the bearing annulus;
the “~” over the variables denotes variation from equilibrium values.

f = ﬁpACq) (24)

where p, = p,; — p,;- In Eq. (24), the deviation of the pocket pressure p, depends on
the flow—pressure characteristics of the bearing. Since there is no contact between the
surfaces, the frictional effect of air is negligible. The equation of rotor motion along
the direction of the actuating force is thus

mehy = Aegfp,. (25)

At equilibrium, since the gap 4 is equal to 4. (Where the subscript ‘e’ denotes that
the variables are evaluated at the steady state) and there is no change of air stored in



K.-M. Lee et al. | Mechatronics 13 (2003) 175-194 185

the bearing, the flow through the orifice is equal to that through the annulus, g.. To
the first degree of Taylor series approximation, the small deviation of the flow rate
through the restrictor about the equilibrium can be written as

qR = _alﬁp + azﬁsv (26)

where ﬁs :ﬁsi _psj;QR = Qri - QR/’

() G)

Pp=ppe B 27ps (ps/ppe) —1
4R =9e
) =
ps

The corresponding linear approximation of the flow rate through the annulus about
the equilibrium condition can be derived from Eq. (10), which yields

qe

arR=2¢c  Ps — Ppe
Pp=Ppe

60 = a3ﬁp + (245,‘, (27)
where
9(qo) 2qeppe 9(qo) 3q.
“= e o G—p) ™ 4=\ oh = h
Pp Jozte b — Pa i/ \h=n, e

where g, = ¢,; — q,;; and note that ﬁj = —h;. As shown in Eq. (8), the difference
between the flow through the restriction and through the annulus is stored in the
bearing, and its linear approximation is given as follows:

dr;l ;3

G = 4P + agh, (28)

where

_(om
as = app

_ Aeghe + danIZ)

. RT
and
s = <@m) _ Aca(Pre — ) + TREPa.
Oh; /|, RT
Hence,
a51;p + aézi = (~a1p, + ap,) — (a3p, + ash;). (29)

To explicitly obtain a dynamic equation in terms of 4;, we eliminate the pressure p,
by substituting it and its time derivative from Eq. (25) into Eq. (29). The resulting
equation of the rotor motion is given by

Z,-—i— (“‘+“3>Zi+ (‘M)Zi+ (M)ﬁi: (M)ﬁs' (30)
as asnm, asniy asm,
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Using Routh—Hurwitz stability criteria, the condition for an asymptotically stable
system implies
(a1 + ag)a()
aads

> 1,

which yields

17(3/2)ps — Ppe
3 Ds — Ppe
or ppe > (3/4)ps. In addition, all the coefficients must be positive for stability, which
implies that py. < ps. Hence,
3 Pre
e 31
4 p T G

3.4. Design tradeoff

Consider the case where the supply pressure is constant (p, = 0). In other words,
the air-bearing system is essentially a passive regulator. Note that the system is third-
order and thus at least one of the characteristic roots is real which implies that Eq.
(30) can be written in the following form:

(s +0)(s* + 2lw,s + w}) = 0. (32)

By expanding Eq. (32) and equating its coefficients to the corresponding terms in Eq.
(30), the design parameters (o, £ and w,) can be related to the system parameters as
follows:

(&) qe
e 33
o f (1 +Ca(dp/he)) he ( )
(Dz +2 w,0 = a ) 33b
» T 200 he(1 + ca(dy/hc)) (33b)
2 Co qe
_ e 33
PO T uldy/he)) B2 339
where
RT 2ppe — Ps 2ppe
Cy — — + , 34a
? Aeq 2ppe (Ps _ppe) plz)e —P§ ( )
A -p, R2p,
¢ = AealPre ZA) + R (34b)
¢ = R (34c)
my
R2
o= (344)

Aeq
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Note that 4., is generally constrained by the spherical actuator geometry. Thus, Egs.
(33a)—(33c) represent the design trade-off among the three design variables, g, .,
and d, for a specified dynamic response, which can be expressed as

l+n ¢
= , 35
=T i@ v, (35)
ho— l4+n ¢ (36)

¢ no o’

Co Cc1Cr 1 n+1
b= -2, (37)
CaCry, [ | +4né n

where n = (2¢w,)/o. The effect of the third pole could be reduced if o is large
compared to w, (or n > 1). However, for a practical air-bearing system, the pocket
depth must be real, finite and positive; it thus imposes a constraint on the choice of
w,,o0, and ¢&.

4. Bearing design for spherical actuator

The distribution of bearings on the spherical rotor determines the support forces
generated. To maintain the rotor in equilibrium at the stator center, the air bearings
are designed to direct their forces at the vertices of polyhedrons towards the stator
center. Thus, once the bearing locations are specified, the directions of the forces are
considered known.

Theoretically, the minimum number of simple point bearings required to
achieve bi-directional position control of the spherical rotor in a three-dimensional
space is four. To illustrate the minimum force requirement, consider three forces
that are directed radially toward the origin O of a fixed reference frame. The
three points P (x,y,z), Py(x,»,z), P3(x,y,z) € E* are on a plane defined by IT1(PP,
PyPy). Since the points at which the forces act are coplanar, any_disturbance in
the orthogonal direction to this plane consisting of the line (PP, x PiP;) will
cause the rotor to lose its equilibrium, since the actuating forces are only acting in
the direction toward the rotor center. Thus, three point bearings are not adequate
to control all three orthogonal translations of the rotor. A forth line of action
must be applied against the plane containing the three points. A possible ar-
rangement of the minimum number of point bearings on a spherical surface is to
locate them at the vertices of a regular tetrahedron on which the sphere is inscribed.
A disadvantage of this configuration is that the four point bearings cannot be
arranged in pairs for a push—pull (regulation) control strategy. The arrangement
of bearings is not necessarily attractive, since four independent actuators are re-
quired.
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Table 2

Icosahedron vertices
Vertices X Y V4
c1 0.89442 0 0.44721
c 0.27639 0.85065 0.44721
3 -0.72361 0.52573 0.44721
cy —-0.72361 —-0.52573 0.44721
Cs 0.27639 —0.85065 0.44721
c —-0.89443 0 —-0.44721
7 —0.27639 —0.85065 -0.44721
cg 0.72360 —0.52573 —-0.44721
Cy 0.72360 0.52573 -0.44721
Clo -0.27639 0.85065 -0.44721

4.1. Design configuration

An alternative arrangement is to locate the bearings at the vertices of polyhe-
drons, in an arrangement similar to that of the stator pole arrangement for a
spherical motor [8]. For polyhedrons such as hexahedrons, octahedrons, icosahe-
drons, and dodecahedrons, bearings can be arranged in pairs with their supporting
forces directed radially toward the center of the sphere. Other advantages include the
following: (1) It could be integrated as a part of the stator pole, so that pressurized
air passes through the center of the electromagnetic pole enabling it also to serve as a
bearing. (2) The air-jet will provide a cooling effect on the electromagnetic pole coil
windings. An example layout is given in Table 2, where 10 of the 12 vertices fol-
lowing the pattern of a unit icosahedron are listed.

The 3D rotor dynamics is of the form:

[m]X = Fr, + Fy, (38)

where F,, and F, are the resultant electromagnetic and air-bearing force vectors,
respectively. In this air-bearing system control, the magnetic force F, is treated as an
external disturbance. As shown in Table 2, five pairs of bearings can be located
diametrically on ¢;/c;ys (i = 1,2,...,5), which pass through the center of the outer
sphere. Thus, the air-bearing force F}, is a sum of the component force vectors
contributed by these five independent pairs of bearings.

4.2. Design of single air-bearing pair

Figs. 4(a) and (b) show the pocket depth plotted as a function of natural fre-
quency and damping ratio, respectively. As /. and d, are inversely proportional to
w?, we chose w, = 240 Hz (or 1508 rad/s), ¢ = 2¢w, (or n = 1) and & = 0.5 to provide
a reasonable physical size for the pocket depth and the air gap and to provide an
acceptable dynamic response. Given the rotor mass of an existing spherical motor
and the available surface area for the bearings, the corresponding calculated pa-
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Fig. 4. Effect of w, and ¢ on the choice of pocket depth. (a) Pocket depth vs natural frequency (n = 1).
(b) Pocket depth vs damping ratio (w, = 240 Hz).

rameters are ¢. = 1.281e-5 kg/s, h. = 0.069 mm and d, = 0.019 mm. Table 3 sum-
marizes the parameters determined from the trade-offs.

Fig. 5 shows the rotor displacement in the direction of actuating force for an
initial displacement of 5.8 um, respectively. As shown in Fig. 5, the rotor returns to
its equilibrium in less than 5 ms.

4.3. Simulation results of the 3D rotor dynamics
The spherical air-bearing system is simulated using MATLAB for the three degrees-

of-freedom rotor translations. In order to examine the effect of trajectory-dependent
magnetic forces during operation, we simulate the 3D rotor dynamics under the
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Table 3

Parameters used in simulation
Parameters Values used
Mass, m, 0.2 kg
Outer radius, R, 12.7 mm
Ry/R, 16
Supply pressure, ps 420 kN /m2
Pressure ratio, ppe/ps 0.92
Pocket depth, dj, 19.3 um
Orifice diameter 0.225 mm
Nominal, & 69 pm

Simulation: Single pair

Displacement (m)

0 0.005 0.01 0015 0.02
Time (sec)

Fig. 5. Rotor displacement (1-d.o.f.).

influence of an external force function as shown in Fig. 6. The simulation results are
plotted in Fig. 7. The results indicate that the external disturbance is adequately
compensated by the air-bearing system, since the force has little impact on the air
bearing dynamics.

Since the models have been derived using perturbation analysis, it is of interest to
examine the range of this approximation. Fig. 8 shows the comparison between the
linearized and the non-linear models about the operating condition. Within +25% of
the equilibrium value, the difference between the actual and the approximate per-
turbation flow rates is only 0.778%. The deviation increases as the operating point is
moved to a reduced pocket pressure (i.e. reduced pressure ratio). This implies that
the operating pocket pressure fluctuates between 3.7e-5 and 3.9e-5 N/m? for this
design. The actual downstream pressure at the edge of the pocket is much less (see
Table 3) due to expansion and corner losses.
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X¥-External Force Trajectory
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Y-External Force Trajectory
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40

Ext-Force (N)
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Fig. 6. External force trajectory.

The design methodology has lead to an improved dynamic performance by re-
ducing contact friction. The torque improvement by using air bearing in place of
transfer bearings on the VR spherical is the total torque loss due to the transfer
bearings. It has been estimated that the maximum radial electromagnetic force is 65
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x10® Simulation: 10 bearings + force trajectory
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Fig. 7. Simulated rotor motion.

N for a particular rotor orientation [27]. For a uniform operating radial force of 32.5
N over eleven transfer bearings and a contact friction coefficient of 0.05 between the
rotor and the plastic transfer bearings, the potential torque gain is 27.17% of the
rated torque. In addition, the air-bearing design has also reduced potential sources of
uncertainty to the control design of the VR spherical motor.
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Fig. 8. Equilibrium operating point.
5. Conclusions

We have presented the method for design of a practical air-bearing system for a
VR spherical motor. Specifically, this paper has addressed the following fundamental
issues of the bearing system design:

1. The method of generating the necessary rotor support forces with externally pres-
surized air and the strategic arrangement of point bearings is discussed. The de-
sign uses strategic placement of bearings at the vertices of polyhedrons and
external pressurized air to regulate the rotor translations.

2. The forward and inverse kinematics between the rotor displacement and the indi-
vidual air gaps at positions round the stator are developed in closed-forms, which
are essential for design, dynamic simulation and control purposes.

3. Along with the pressure—flow relationship as a function of the rotor position, the
paper presented a detailed dynamic model of the air bearing. Trade-off between
the design parameters and the dynamic performance of the air-bearing regulator
system have been discussed with a design example.

The studies have led to the design of a potentially useful air-bearing system ca-
pable of eliminating frictions in ball-joint-like actuators. The dynamic performance
of the air-bearing system has been evaluated analytically by simulation. It is expected
that this research will be a basis for designing and evaluating an improved VR
spherical motor with enhanced torque capability by eliminating mechanical friction.
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