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Abstract

This paper presents an analytical investigation of the design method and modeling of an

air-bearing system for ball-joint-like actuators. It addresses the method of regulating the three-

d.o.f. translations of the rotor introduced by the air-bearing system, thereby improving the

dynamic performance of the orientation motion manipulation. The kinematics, which relates

the rotor displacement and the air gaps that are essential for design optimization, dynamic

simulation and motion control, are derived in closed-form. With a detailed modeling of the

pressure–flow relationship as a function of the rotor position, the forces and dynamics of the

system are formulated, and design methods for regulating the rotor displacement have been

explored analytically. Simulation results suggest that the fluid forces could be generated to

passively stabilize the otherwise open-loop, unstable, electromagnetic system. It is expected

that this research will be a basis for designing and evaluating an improved VR spherical motor

with enhanced torque capability by eliminating mechanical friction.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many applications in industry require the use of fluid bearings to overcome

friction, to provide more precise location and alignment of components, and to enable

smooth movement of large components from one point to another point. In other
applications, precise alignment of parts is critical to the quality and specifications of

the product. As advances in technology continue to demand more accurate and
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precise devices, there are opportunities to utilize the uniquely attractive features of

air-bearing systems to meet these challenges.

Three basic techniques are used in non-contact bearing designs. They are fluid

bearings, magnetic levitation, and the Meissner effect. A comparison of the attributes
of these levitation techniques is provided in Table 1 [1]. A non-contact air bearing is

considered here, since it has the potential to enhance the motor’s performance for

more advanced applications, it has a cooling effect on interacting components and it

does not interfere with the actuator electromagnetic system. In fluid bearings, a film

of fluid is forced between interacting surfaces to separate them. An external pump

usually generates the pressure. Depending on the source of pressurization, fluid

bearings are categorized into hydrodynamic and hydrostatic bearings. Hydro-

dynamic bearings are self-acting since the pressure separating the surfaces is a
consequence of high-frequency, relative oscillatory movement of the surfaces. This

technique is commonly used in miniaturized, low load support applications, for

example bearings for hard-disk drives [2]. In hydrostatic fluid bearings, external

fluids, typically liquid oils, are supplied to maintain a high-pressurized fluid film

between surfaces. The equivalent of hydrostatic and hydrodynamic bearings when

air is the fluid medium are aerostatic and aerodynamic bearings, respectively. The

primary difference is that air is compressible while liquids are generally considered

incompressible.
Many authors have studied the dynamic behavior of fluid films in fluid-bearing

systems [1,3]. Bearings based on viscous oil form the thrust of successes in heavy

machinery design, where the oil films are used as friction-reducing, parts-separating

lubricants especially in journal and ball bearings. Among the works in this area is the

squeeze film technique motivated by the rapid advancement of micro-devices.

Fearing et al. [4] studied miniaturized systems with small dimensions and narrow

gaps associated with microstructures based on aerodynamic squeeze film technique

and showed that the degree of pressurization is proportional to the frequency and
amplitude of the externally applied oscillation. The researchers also extended the

Table 1

Comparison of levitation techniques

Attributes Fluid bearing Magnetic

bearing

Meissner

effectGas Oil

Simplicity Fair Fair Good –

Cleanliness Good Poor Good Good

Material availability Good Good Fair Poor

Cost Average Average High High

Load bearing Poor Good – –

Wear resistance Good Fair Good Good

Reliability – Fair Fair –

Operating temperature Low High Low Sub-zero

Heat dissipation High Fair low –

Standard parts available? Poor Good Fair –

Machining accuracy High High – –
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works of others by using capacitive measurements to study the stability of squeeze

film bearings; they concluded that air spring force is proportional to the inverse fifth

power of the plate separation while the damping force is proportional to the cube of
the float height. Pina da Silva and his co-workers [5,6] presented a finite element

method used for improving squeeze film analysis. Crank and Nicolson [7] had earlier

contributed a method to vary design parameters in squeeze film bearings resulting in

the effects of bearing parameters on the system performance being studied for im-

provements through optimization. Blech [8] developed and solved the linearized

model for compressible gas lubrications while Sherman [9] extended the work to

non-linear models. These works have contributed to sub-millimeter robotic systems

like micro-robots.
Recently, Zorge [10] presented a method for measurement of miniature hemi-

spherical air-bearing parameters such as load capacity, stiffness, etc., using electrical

gap capacitance. The research showed that this method is inexpensive, has high

measuring resolution and accuracy, and is able to capture dynamic behavior. The

disadvantage of this method is that calibration is required for each bearing shape. In

addition, the material of the bearing must not be metal, which is not always the

practical case. On aerostatics, many researchers [11–13] have investigated bearing

designs and characteristics. Ono [14] proposed an air bearing with multiple source
feeds or narrow grooves to fight pneumatic instability; this design attained a measure

of success. Other authors [12,15,16] have contributed to improving stability of fixed

orifice or inherent restrictor bearings. Because self-excited vibrations may occur in

frequently used fixed-orifice, aerostatic bearings, simultaneous improvements in the

dynamic stiffness and stability were difficult to obtain. Sato et al. [17] examined

theoretically and experimentally the dynamic characteristics with an actively con-

trolled restrictor. Their results showed improvements in dynamic stiffness and sta-

bility. Though the experiment had some success, practical applications were not
thought to be feasible. A drawback of aerostatic bearings is that relatively large areas

are required to achieve high load-bearing capacity.

Other researchers have worked on controls techniques for bearing devices.

Hammer et al. [18] designed a novel three-degrees of freedom (d.o.f.) fine positioner

(FP), which provided high performance, precision and speed (12g’s acceleration, 0.2
lm resolution) for robotic application. Control issues, aimed at achieving stable

response, good disturbance rejection and closed-loop control, were discussed. In-

terests in developing integrated motor-bearing system have motivated a number of
researchers [19–21] to develop control methods for magnetic bearing systems to

compensate rotor misalignment. These works, however, have concentrated on single

axis bearing devices.

In this paper, we explore the use of a non-contact, spherical air-bearing system for

multi-d.o.f. spherical actuators developed by Lee and his co-workers [22–24], which

operates on the principles of variable reluctance (VR). The motor combines the roll,

pitch and yaw motion in one joint making it attractive for many applications. Be-

sides the capability of three-d.o.f. motions in one joint, the motor has a large range
of motion, isotropic properties and no singularities within the workspace. These

flexible design features make the VR spherical motor suitable for a wide range of
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applications such as water-jet cutting, laser cutting, painting, welding, material

handling, coordinate measurement etc., where smooth uniform manipulation of the

end-effector is required. Over the years, research has been directed toward the op-

timization of the motor torque. Recent efforts to reduce the discrepancies between
the actual and predicted torque outputs have suggested that friction, accountable by

the transfer bearings of the motor, is significant. While the ‘‘reaction-free’’ magnetic

levitation control strategy proposed by Zhou and Lee [25] has the effect of relaxing

frictional forces, the trade-off is the need for sophisticated feedback control design

due to the inherent instability of the electromagnetic system. As advances in tech-

nology continue to demand more accurate and high precision spherical devices, we

explore the use of thin-film air bearings along with the unique attractive features of

the VR spherical motor to meet these challenges. Specifically, we discuss a practical
means to effectively overcome static and dynamic friction in spherical actuators,

aimed at improving the output torque and broadening the tasks they can undertake.

We explore air bearings over fluid bearings, magnetic levitation, and the Meissner

effect because air bearings are clean, have a cooling effect on interacting components

and do not interfere with the actuator electromagnetic system.

The rest of this paper is organized as follows: Section 2 discusses the bearing

design configuration for a ball-joint-like spherical device. This is followed by the

characterization of airflow through the bearing in Section 3, which generates the
forces on the rotor. Then, the system dynamics are presented in Section 4, followed

by design methodology and simulations in Section 5. Finally, our conclusions are

presented.

2. Bearing for ball-joint-like devices

Consider an arbitrary displacement of the two spherical surfaces as shown in Fig.

1, where ro
*
is the rotor displacement with respect to the center of the stator.

Fig. 1. Conceptual schematics illustrating spherical bearing.
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In Fig. 1, the reference frame XYZ is defined at the center of the stator, O, with

the Z-axis pointing toward the opening on the stator, and xyz is fixed at the center of

the rotor, O0, with its z-axis along the rotor output shaft. At equilibrium, the co-
ordinate frames XYZ and xyz have a common origin at their centers. Thus, any

position on the rotor can be expressed with respect to the XYZ coordinate system

using a 4� 4 homogeneous transformation matrix, [T]:

½P �XYZ ¼ ½T �½P �xyz; ð1Þ

where ½P �XYZ and ½P �xyz are the position of a point on the rotor measured with respect
to XYZ and xyz, respectively.

2.1. Bearing configurations

The design concept uses pressurized air to regulate the rotor such that the rotor

displacement ro
*
is null regardless of any ‘‘disturbances’’ caused by the electromag-

netic actuation or an external force. Multiple independent spherical bearings are

strategically designed to support the rotor. In general, the larger the number of
bearings, the larger the load the system is capable of supporting. The challenge,

however, is to design a compact yet efficient air-bearing system to fit into the limited

surface area of the rotor. In addition, the bearings should be designed so that they do

not interfere with the electromagnetic poles of the spherical motor, which are located

following the pattern of a regular polyhedron.

An attractive design forces pressurized air passes through the center of the stator

poles on which the coils are wound, enabling the units to serve as bearings. The

advantages of joint magnetic-pole/bearing units are twofold: (1) The air jet will
provide a cooling effect to the coil windings. (2) It will optimize the stator surface by

maximizing the size of a bearing, thereby enhancing load-bearing capacity. In the

following discussion, we shall consider the case where six or more bearing points are

evenly spaced on the spherical bearing such that bearing forces can always be

grouped in pairs. As illustrated in Fig. 1, the pair of bearing forces Fi

*

and Fj

*

exert

equal but opposite forces through the center of the stator.

2.2. Forward kinematics

The gap between the stator and rotor along a pair of forces, Fi

*

and Fj

*

, can be

determined with the aid of Fig. 2. The net force, Fij

*

¼ Fi

*

þ Fj

*

, can be described by

Fij

*

¼ Fijeij
*
; ð2Þ

where Fij and eij
*
are the magnitude and the unit vector (known) of the resultant

force. As shown graphically in Fig. 2(b), the minimum air gap between the rotor and

the stator is in the direction of ro
*
. Thus, the included angle between Fij

*

and ro
*
is
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hji ¼ cos	1 eij
* 
 ero

*
� �

¼ cos	1
Fij

*


 ro
*

Fijro

 !
; ð3Þ

where ro is the magnitude and ero
*
is the unit vector of ro

*
. For a given rotor dis-

placement, the air gaps, hi, and hj are given by Eqs. (4a) and (4b):

hi ¼ rs 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2r 	 r2o sin

2 hji

q�
þ ro cos hji

�
ð4aÞ

and

hj ¼ rs 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2r 	 r2o sin

2 hji

q�
	 ro cos hji

�
; ð4bÞ

where rs and rr are the radii of the stator and rotor at the interface, respectively.

2.3. Inverse kinematics

Since direct sensing of the rotor displacement ro
*
is difficult, the inverse kinematics

provide a practical means of computing the rotor position from the air gap mea-

surements. With three independent pairs of gap measurements, the three orthogonal

components of the rotor displacement can be determined as follows.

Subtracting Eq. (4a) from Eq. (4b), we have

ro cos hji ¼ ro
* 
 eij

* ¼ hj 	 hi

2
: ð5aÞ

Two other similar equations can be obtained from two other pairs of air gaps.

ro
* 
 e*j	1;i	1 ¼

hj	1 	 hi	1

2
; ð5bÞ

ro
* 
 e*jþ1;iþ1 ¼

hjþ1 	 hiþ1

2
: ð5cÞ

(a) (b)

Fig. 2. Schematics for gap determination. (a) Rotor displacement. (b) Bearing force line of action.
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Eqs. (5a)–(5c) can be written in matrix form:

e
*

j	1;i	1 e
*

j;i e
*

jþ1;iþ1

h i rx
ry
rz

2
4

3
5 ¼ 1

2

hj	1 	 hi	1
hj 	 hi

hjþ1 	 hiþ1;

2
4

3
5; ð6Þ

where rx, ry and rz are the components of ro
*
in the direction of X, Y and Z, re-

spectively.

3. Air-bearing force model

Fig. 3 shows a schematic of a simple, pocketed, orifice-compensated bearing. Air

enters from a pressure source, passes through an orifice of diameter do, then expands
isentropically into the pocket of diameter Rp and recess dp, and finally exhausts to the
atmosphere through the annulus, which consists of two parallel surfaces of spacing h.

3.1. Flow characteristics

The following assumptions are made in deriving the dynamic model: (1) The

pressure in the pocket is uniform; (2) The air is isothermal; (3) Changes in air density

are attributed mainly to variations in pressure, and the ideal gas law, p ¼ qRT , where
p, R and T are the pressure, gas constant and temperature of the air, respectively, is

assumed to hold throughout. Thus, the force acting on the rotor is given by inte-

grating the pressure over the bearing surface as follows:

f ¼ 2p
Z Rp

0

pprdr

"
þ
Z Rb

Rp

prdr

#
; ð7Þ

where pp and p are the pressures in the pocket and the annulus, respectively. The

mass m contained in the bearing is a function of the rotor displacement along

the direction of the actuating force as well as the air density and the state of the air.

Fig. 3. Orifice compensated air bearing.
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The time rate of change of the air mass is the difference between the inflow and the

outflow, or

dm
dt

¼ qR 	 qo; ð8Þ

where m is the mass of the air contained between the bearing surfaces; and qR and qo
are the mass flow rate through the orifice restriction and the exhaust, respectively.

The mass m is given by

m ¼ 2p
Z Rp

0

ðdp

"
þ hÞqrdr þ

Z Rb

Rp

hqrdr

#

or

m ¼ pp
RT

pR2pðdp þ hÞ þ 2p
RT

Z Rb

Rp

hprdr: ð9Þ

Since the gap in the annulus is very small and the pressure variation in the z-
direction is negligible, the flow between the surfaces is laminar. Thus, the flow–

pressure relationship through the annulus, which is essentially laminar flow between

two parallel surfaces, can be shown to be

p2 ¼ p2a þ
12lqoRT

ph3
ln

Rb
r

� �

or we can express the flow rate as a function of pressure and the air gap as follows:

qo ¼
ðp2p 	 p2aÞph3

12lRT lnðRb=RpÞ
: ð10Þ

The flow through an orifice has been modeled by several authors [9,26]. A particular

form, known as Fliegner’s approximation, has been chosen for this analysis due to its

convenience for analytical and computational purposes.

qR ¼ 2
pd2o
4

� �
c
RT

2

c þ 1

� �ðcþ1Þ=ðc	1Þ

pspp
�"

	 p2p
�#1=2

: ð11Þ

3.2. Energy conversion

The effect of the air gap on the rotor dynamics can be examined using the prin-

ciple of energy conservation:

F
*

bðtÞ 
 v
*ðtÞ ¼ _EEf ; ð12Þ

where _EEf is the rate of the net fluid energy that is converted into mechanical energy;
and F

*

b and v
*
are the corresponding converted mechanical force and velocity vectors,

respectively. For multiple pairs of air bearings, the net fluid power is given by
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_EEf ¼
Xn
i¼1

psiqRi

�
	 paiqoi 	

d

dt
1

2
Cip2pi

� ��
; ð13Þ

where the air capacitance is defined as Ci ¼ dmi=dppi; and n is the number of air-

bearing units.

Using Eq. (8), Eq. (13) can be rewritten as

_EEf ¼
Xn
i¼1

ðpsi
�

	 ppiÞqRi þ ðppi 	 paiÞqoi 	
1

2
p2pi _CCi

�
: ð14Þ

The mechanical power can be written as

F
*

bðtÞ 
 v
*ðtÞ ¼

X3
k¼1

Fbk _XXk; ð15Þ

where _XXk ði ¼ 1; 2; 3Þ are the linear velocity components of the rotor or

dEf ¼ ðF
*

b 
 v
*Þdt ¼ Fbxdxþ Fbydy þ Fbzdz: ð16Þ

Noting that the elements, dx, dy and dz, are independent of each other, the gradi-

ent of the total energy of the system gives the forces along the tangent lines; we

have

F
*

b ¼ rEf ; ð17Þ

where

r � o

oX1

� �
E
*

1 þ
o

oX2

� �
E
*

2 þ
o

oX3

� �
E
*

3

is the gradient of the system’s energy along the stator fixed coordinate axes.

In Eq. (14), the first and second terms account for fluid frictional dissipation in the

orifice and in the annulus, respectively. The third term accounts for the fluid energy

stored within the air gap, which depends on the volume change (capacitor) and the

pressure in the air gap. To serve as an efficient air-bearing, the third term must

dominate; otherwise the fluid energy will be dissipated as frictional heat. If the fluid

frictional dissipation in the orifice and in the annulus are negligible; the system
approaches the case of ideal energy transformation or

F
*

b;ideal ¼ rEf ¼ 	 1
2

Xn
i¼1

p2pirCi: ð18Þ

For a small air gap, the pressure in the annulus could be reasonably approximated

by a linear relationship:

p ffi pp 	 ðpp 	 paÞ
r 	 Rp
Rb 	 Rp

: ð19Þ
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Substituting p from Eq. (19) into Eq. (9), we have

m ffi
½hippAeq þ dppppR2p þ hipaðpR2b 	 AeqÞ�

RT
; ð20Þ

where

Aeq ¼ pR2eq ¼
p
3
ðR2b þ RbRp þ R2pÞ:

Using the definition of the air capacitance and Eq. (20), the following approximation

can be derived:

Ci ffi
½hiAeq þ dppR2p�

RT
; ð21Þ

F
*

b;ideal ffi 	 Aeq
2RT

Xn
i¼1

p2pirhi: ð22Þ

As shown in Eqs. (18) and (25), the air-bearing force is a quadratic function in ppi. In
addition, the force increases as the air gap (or the capacitance) decreases, which

tends to stabilize about a steady-state operating point.

3.3. Perturbation model

In general, frictional dissipation cannot be neglected and the flow–pressure rela-
tionships, given by Eqs. (10) and (11), are highly non-linear. For the study of the

dynamics due to a small deviation of the rotor displacement as shown in Fig. 2, we

derive a perturbation model about an equilibrium operating condition (where the

rotor is concentric with the stator).

Using the linear approximation of pressure along the annulus, the total force

acting on the rotor is obtained by integrating the pressure over the bearing surfaces.

~ff ¼ 2p
Z Rp

0

ð~pppi

"
	 ~pppjÞrdr 	

Z Rb

Rp

ð~pppi 	 ~pppjÞ
r 	 Rp
Rb 	 Rp

rdr

#
; ð23Þ

where the first integrand is at the pocket and the second is from the bearing annulus;

the ‘‘�’’ over the variables denotes variation from equilibrium values.

~ff ¼ ~pppAeq; ð24Þ

where ~ppp ¼ ~pppi 	 ~pppj. In Eq. (24), the deviation of the pocket pressure pp depends on
the flow–pressure characteristics of the bearing. Since there is no contact between the

surfaces, the frictional effect of air is negligible. The equation of rotor motion along

the direction of the actuating force is thus

mr
€~hhi
~hhi ¼ Aeq~ppp: ð25Þ

At equilibrium, since the gap h is equal to he (where the subscript ‘e’ denotes that
the variables are evaluated at the steady state) and there is no change of air stored in
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the bearing, the flow through the orifice is equal to that through the annulus, qe. To
the first degree of Taylor series approximation, the small deviation of the flow rate

through the restrictor about the equilibrium can be written as

~qqR ¼ 	a1~ppp þ a2~pps; ð26Þ

where ~pps ¼ ~ppsi 	 ~ppsj; ~qqR ¼ ~qqri 	 ~qqRj;

a1 ¼
oðqRÞ
opp

� �����
pp¼ppe
qR¼qe

¼ qe
2ps

2	 ðps=ppeÞ
ðps=ppeÞ 	 1

� �
and

a2 ¼
oqR
ops

� �����
qR¼qe
pp¼ppe

¼ qe
ps 	 ppe

:

The corresponding linear approximation of the flow rate through the annulus about

the equilibrium condition can be derived from Eq. (10), which yields

~qqo ¼ a3~ppp þ a4~hhi; ð27Þ

where

a3 ¼
oðqoÞ
opp

����
qo¼qe
pp¼ppe

¼ 2qeppe
ðp2p 	 p2aÞ

and a4 ¼
oðqoÞ
ohi

� �����
hi¼he

¼ 3qe
he

;

where ~qqo ¼ ~qqoi 	 ~qqoj; and note that ~hhj ¼ 	~hhi. As shown in Eq. (8), the difference

between the flow through the restriction and through the annulus is stored in the

bearing, and its linear approximation is given as follows:

d ~mm
dt

¼ a5 _~pp~ppp þ a6
_~hh~hh; ð28Þ

where

a5 ¼
om
opp

� �����
e

¼
Aeqhe þ dppR2p

RT

and

a6 ¼
om
ohi

� �����
e

¼
Aeq ppe 	 pa
� �

þ pR2bpa
RT

:

Hence,

a5 _~pp~ppp þ a6
_~hh~hhi ¼ ð	a1~ppp þ a2~ppsÞ 	 ða3~ppp þ a4~hhiÞ: ð29Þ

To explicitly obtain a dynamic equation in terms of hi, we eliminate the pressure pp
by substituting it and its time derivative from Eq. (25) into Eq. (29). The resulting

equation of the rotor motion is given by

€~hh~hhi þ
a1 þ a3

a5

� �
€~hh~hhi þ

Aeqa6
a5mr

� �
_~hh~hhi þ

Aeqa4
a5mr

� �
~hhi ¼

Aeqa2
a5mr

� �
~pps: ð30Þ
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Using Routh–Hurwitz stability criteria, the condition for an asymptotically stable

system implies

ða1 þ a3Þa6
a4a5

> 1;

which yields

1

3

ð3=2Þps 	 ppe
ps 	 ppe

� �
> 1

or ppe > ð3=4Þps. In addition, all the coefficients must be positive for stability, which
implies that ppe < ps. Hence,

3

4
<

ppe
ps

< 1: ð31Þ

3.4. Design tradeoff

Consider the case where the supply pressure is constant (~pps ¼ 0). In other words,

the air-bearing system is essentially a passive regulator. Note that the system is third-

order and thus at least one of the characteristic roots is real which implies that Eq.

(30) can be written in the following form:

ðsþ rÞðs2 þ 2nxnsþ x2
nÞ ¼ 0: ð32Þ

By expanding Eq. (32) and equating its coefficients to the corresponding terms in Eq.

(30), the design parameters (r; n and xn) can be related to the system parameters as
follows:

r þ 2nxn ¼
c2

1þ caðdp=heÞ
� � qe

he
; ð33aÞ

x2
n þ 2nxnr ¼ c1

he 1þ caðdp=heÞ
� � ; ð33bÞ

rx2
n ¼

co
1þ caðdp=heÞ
� � qe

h2e
; ð33cÞ

where

c2 ¼
RT
Aeq

2ppe 	 ps

2ppeðps 	 ppeÞ

"
þ 2ppe

p2pe 	 p2a

#
; ð34aÞ

c1 ¼
Aeqðppe 	 paÞ þ pR2bpa

mr

; ð34bÞ

co ¼
3RT
mr

; ð34cÞ

ca ¼
pR2p
Aeq

: ð34dÞ
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Note that Aeq is generally constrained by the spherical actuator geometry. Thus, Eqs.
(33a)–(33c) represent the design trade-off among the three design variables, qe; he,
and dp for a specified dynamic response, which can be expressed as

qe ¼
1þ n

1þ 4nn2
c1

c2xn
; ð35Þ

he ¼
1þ n
n

co
c2x2

n

; ð36Þ

dp ¼
co

cac2x2
n

c1c2
co

1

1þ 4nn2
�

	 nþ 1
n

�
; ð37Þ

where n ¼ ð2nxnÞ=r. The effect of the third pole could be reduced if r is large

compared to nxn (or n � 1). However, for a practical air-bearing system, the pocket
depth must be real, finite and positive; it thus imposes a constraint on the choice of

xn; r, and n.

4. Bearing design for spherical actuator

The distribution of bearings on the spherical rotor determines the support forces
generated. To maintain the rotor in equilibrium at the stator center, the air bearings

are designed to direct their forces at the vertices of polyhedrons towards the stator

center. Thus, once the bearing locations are specified, the directions of the forces are

considered known.

Theoretically, the minimum number of simple point bearings required to

achieve bi-directional position control of the spherical rotor in a three-dimensional

space is four. To illustrate the minimum force requirement, consider three forces

that are directed radially toward the origin O of a fixed reference frame. The
three points P1ðx; y; zÞ; P2ðx; y; zÞ; P3ðx; y; zÞ 2 E3 are on a plane defined by PðP1P2

!
;

P1P3
!

Þ. Since the points at which the forces act are coplanar, any disturbance in
the orthogonal direction to this plane consisting of the line ðP1P2

!
� P1P3

!
Þ will

cause the rotor to lose its equilibrium, since the actuating forces are only acting in

the direction toward the rotor center. Thus, three point bearings are not adequate

to control all three orthogonal translations of the rotor. A forth line of action

must be applied against the plane containing the three points. A possible ar-

rangement of the minimum number of point bearings on a spherical surface is to
locate them at the vertices of a regular tetrahedron on which the sphere is inscribed.

A disadvantage of this configuration is that the four point bearings cannot be

arranged in pairs for a push–pull (regulation) control strategy. The arrangement

of bearings is not necessarily attractive, since four independent actuators are re-

quired.
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4.1. Design configuration

An alternative arrangement is to locate the bearings at the vertices of polyhe-

drons, in an arrangement similar to that of the stator pole arrangement for a

spherical motor [8]. For polyhedrons such as hexahedrons, octahedrons, icosahe-

drons, and dodecahedrons, bearings can be arranged in pairs with their supporting
forces directed radially toward the center of the sphere. Other advantages include the

following: (1) It could be integrated as a part of the stator pole, so that pressurized

air passes through the center of the electromagnetic pole enabling it also to serve as a

bearing. (2) The air-jet will provide a cooling effect on the electromagnetic pole coil

windings. An example layout is given in Table 2, where 10 of the 12 vertices fol-

lowing the pattern of a unit icosahedron are listed.

The 3D rotor dynamics is of the form:

½mr� €XX ¼ Fm þ Fb; ð38Þ

where Fm and Fb are the resultant electromagnetic and air-bearing force vectors,
respectively. In this air-bearing system control, the magnetic force Fm is treated as an
external disturbance. As shown in Table 2, five pairs of bearings can be located

diametrically on ci=ciþ5 ði ¼ 1; 2; . . . ; 5Þ, which pass through the center of the outer
sphere. Thus, the air-bearing force Fb is a sum of the component force vectors

contributed by these five independent pairs of bearings.

4.2. Design of single air-bearing pair

Figs. 4(a) and (b) show the pocket depth plotted as a function of natural fre-

quency and damping ratio, respectively. As he and dp are inversely proportional to
x2

n, we chose xn ¼ 240 Hz (or 1508 rad/s), r ¼ 2nxn (or n ¼ 1) and n ¼ 0:5 to provide
a reasonable physical size for the pocket depth and the air gap and to provide an

acceptable dynamic response. Given the rotor mass of an existing spherical motor

and the available surface area for the bearings, the corresponding calculated pa-

Table 2

Icosahedron vertices

Vertices X Y Z

c1 0.89442 0 0.44721

c2 0.27639 0.85065 0.44721

c3 )0.72361 0.52573 0.44721

c4 )0.72361 )0.52573 0.44721

c5 0.27639 )0.85065 0.44721

c6 )0.89443 0 )0.44721
c7 )0.27639 )0.85065 )0.44721
c8 0.72360 )0.52573 )0.44721
c9 0.72360 0.52573 )0.44721
c10 )0.27639 0.85065 )0.44721
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rameters are qe ¼ 1:281e–5 kg/s, he ¼ 0:069 mm and dp ¼ 0:019 mm. Table 3 sum-
marizes the parameters determined from the trade-offs.

Fig. 5 shows the rotor displacement in the direction of actuating force for an

initial displacement of 5.8 lm, respectively. As shown in Fig. 5, the rotor returns to
its equilibrium in less than 5 ms.

4.3. Simulation results of the 3D rotor dynamics

The spherical air-bearing system is simulated using MATLAB for the three degrees-

of-freedom rotor translations. In order to examine the effect of trajectory-dependent

magnetic forces during operation, we simulate the 3D rotor dynamics under the

Fig. 4. Effect of xn and n on the choice of pocket depth. (a) Pocket depth vs natural frequency ðn ¼ 1Þ.
(b) Pocket depth vs damping ratio (xn ¼ 240 Hz).
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influence of an external force function as shown in Fig. 6. The simulation results are

plotted in Fig. 7. The results indicate that the external disturbance is adequately

compensated by the air-bearing system, since the force has little impact on the air

bearing dynamics.

Since the models have been derived using perturbation analysis, it is of interest to

examine the range of this approximation. Fig. 8 shows the comparison between the

linearized and the non-linear models about the operating condition. Within �25% of

the equilibrium value, the difference between the actual and the approximate per-
turbation flow rates is only 0.778%. The deviation increases as the operating point is

moved to a reduced pocket pressure (i.e. reduced pressure ratio). This implies that

the operating pocket pressure fluctuates between 3.7e–5 and 3.9e–5 N/m2 for this

design. The actual downstream pressure at the edge of the pocket is much less (see

Table 3) due to expansion and corner losses.

Fig. 5. Rotor displacement (1-d.o.f.).

Table 3

Parameters used in simulation

Parameters Values used

Mass, mr 0.2 kg

Outer radius, Rb 12.7 mm

Rb=Rp 16

Supply pressure, ps 420 kN=m
2

Pressure ratio, ppe=ps 0.92

Pocket depth, dp 19:3 lm
Orifice diameter 0.225 mm

Nominal, h 69 lm
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The design methodology has lead to an improved dynamic performance by re-

ducing contact friction. The torque improvement by using air bearing in place of

transfer bearings on the VR spherical is the total torque loss due to the transfer

bearings. It has been estimated that the maximum radial electromagnetic force is 65

Fig. 6. External force trajectory.
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N for a particular rotor orientation [27]. For a uniform operating radial force of 32.5

N over eleven transfer bearings and a contact friction coefficient of 0.05 between the

rotor and the plastic transfer bearings, the potential torque gain is 27.17% of the

rated torque. In addition, the air-bearing design has also reduced potential sources of

uncertainty to the control design of the VR spherical motor.

Fig. 7. Simulated rotor motion.
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5. Conclusions

We have presented the method for design of a practical air-bearing system for a

VR spherical motor. Specifically, this paper has addressed the following fundamental

issues of the bearing system design:

1. The method of generating the necessary rotor support forces with externally pres-

surized air and the strategic arrangement of point bearings is discussed. The de-
sign uses strategic placement of bearings at the vertices of polyhedrons and

external pressurized air to regulate the rotor translations.

2. The forward and inverse kinematics between the rotor displacement and the indi-

vidual air gaps at positions round the stator are developed in closed-forms, which

are essential for design, dynamic simulation and control purposes.

3. Along with the pressure–flow relationship as a function of the rotor position, the

paper presented a detailed dynamic model of the air bearing. Trade-off between

the design parameters and the dynamic performance of the air-bearing regulator
system have been discussed with a design example.

The studies have led to the design of a potentially useful air-bearing system ca-

pable of eliminating frictions in ball-joint-like actuators. The dynamic performance

of the air-bearing system has been evaluated analytically by simulation. It is expected

that this research will be a basis for designing and evaluating an improved VR

spherical motor with enhanced torque capability by eliminating mechanical friction.
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